

CONSTRUCTED WETLANDS FOR RURAL WASTEWATER TREATMENT

ALISON TOMPKINS

PLANNER & FLOODPLAIN COORDINATOR

NEZ PERCE COUNTY, IDAHO

ATOMPKINS@ROADRUNNER.COM

SMALL COMMUNITIES, BIG PROBLEMS...

CITY OF JULIAETTA, IDAHO POPULATION 609 FACILITY BUILT IN 1977 STILL USES THE MAJORITY OF THE ORIGINAL EQUIPMENT.

- AGING INFRASTRUCTURE
- INCREASINGLY STRINGENT
 WATER QUALITY STANDARDS
- \$\$\$\$ SYSTEM UPGRADES
- SMALL TAX BASE

TOMPKINS, 2017.

• STAFFING FOR M&O

QUICK FACTS:

THERE ARE 187 CITIES IN IDAHO WITH A POPULATION LESS THAN 5,000

IN ADDITION, THERE ARE UNINCORPORATED COMMUNITIES & SUBDIVISIONS USING CENTRALIZED WASTEWATER TREATMENT SYSTEMS

FROM 2015-2018, THE IDAHO DEPARTMENT OF ENVIRONMENTAL QUALITY FUNDED CONSTRUCTED LOANS FOR 8 IDAHO CITIES (POPULATION <6,000) TOTALING OVER \$60,000,000

TRADITIONAL TECHNOLOGY

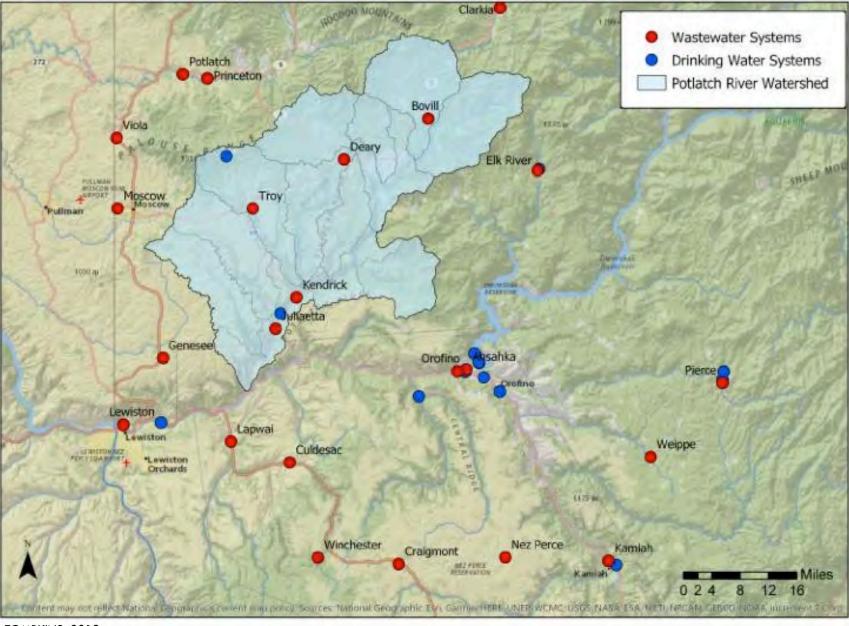
LAGOONS ARE COMMONLY USED FOR WASTEWATER TREATMENT IN SMALL COMMUNITIES, BUT PROVIDE NO ANCILLARY BENEFITS. RENOVATIONS STILL COST MILLIONS...

GOOGLE EARTH, 2019.

CURRENT ISSUES

TRADITIONAL LAGOON INFRASTRUCTURE IS AGING AND WILL COST MILLIONS OF DOLLARS TO REPLACE

NEW DISCHARGE PERMITS CONTAIN HIGHER STANDARDS THAN BEFORE...


SUCH AS AMMONIA, PHOSPHOROUS, AND WATER TEMPERATURE

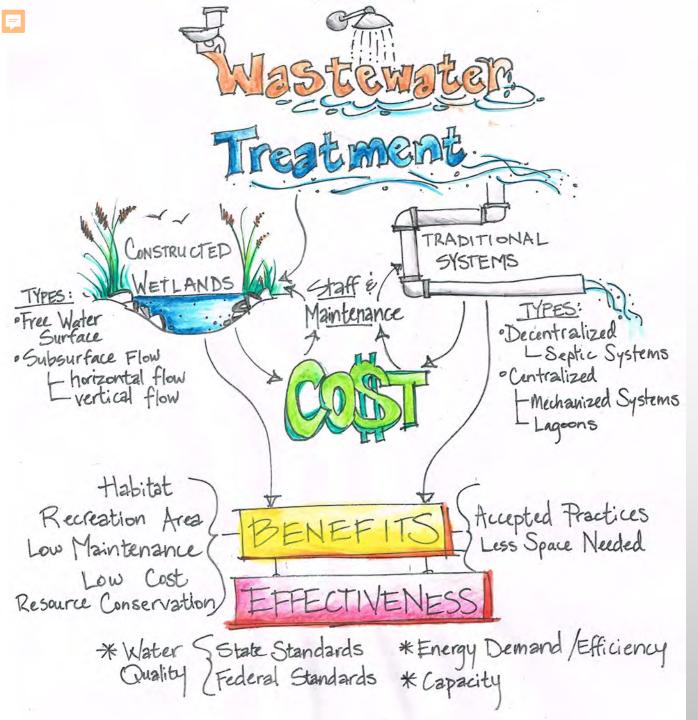
CITIES OBTAIN DRINKING WATER FROM THE SAME RIVERS THAT RECEIVE TREATED WASTEWATER

EFFECTIVE WASTEWATER TREATMENT \rightarrow COST SAVINGS FOR CLEAN DRINKING WATER

-

Drinking Water Sources & Wastewater Discharge in the Potlatch River Watershed & Vicinity

TOMPKINS, 2019.



TIME FOR CHANGE...

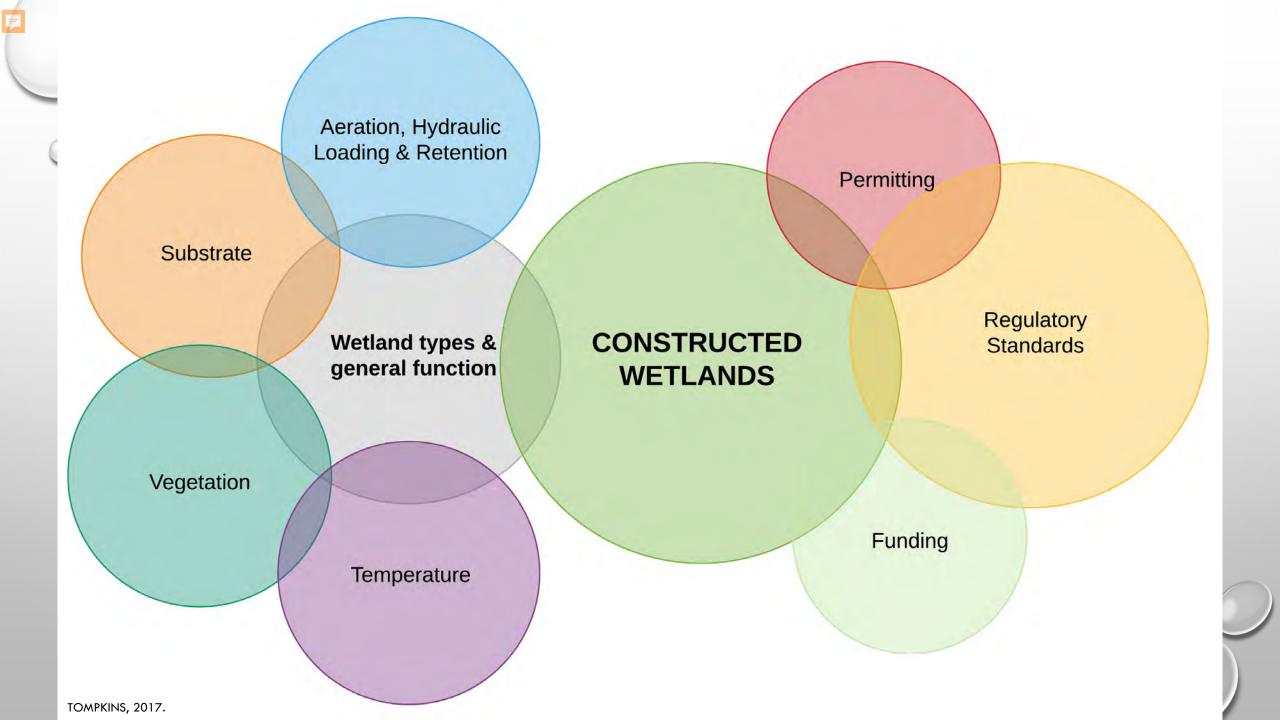
INFRASTRUCTURE IS REACHING THE END OF ITS USEFUL LIFE

IT IS EXPECTED THAT MANY FACILITIES WON'T BE ABLE TO MEET STANDARDS OF NEW DISCHARGE PERMITS

CONSTRUCTED WETLANDS MAY BE THE OPTION COMMUNITIES CAN'T AFFORD TO REFUSE!

PROJECT SCOPE & GOALS

- IDENTIFY THE CRITICAL
 COMPONENTS OF A
 CONSTRUCTED WETLAND
- IDENTIFY CHALLENGES AND SOLUTIONS TO PERMITTING AND FUNDING
- COMPARE COST AND BENEFITS OF CONSTRUCTED WETLANDS TO TRADITIONAL WASTEWATER TREATMENT METHODS



WHY CONSTRUCTED WETLANDS?

HAVE LOW ENERGY NEEDS AND FEWER OPERATIONAL REQUIREMENTS COMPARED TO CONVENTIONAL WASTEWATER TREATMENT SYSTEMS

CAN PRODUCE HIGH QUALITY EFFLUENT AND AT LOWER POWER REQUIREMENTS THAN CONVENTIONAL ACTIVATED SLUDGE SYSTEMS

OFFER SEVERAL BENEFITS COMPARED TO TRADITIONAL CENTRALIZED TREATMENT SYSTEMS: LOWER WATER TEMPERATURE, LOWER ENERGY DEMAND, LOWER MAINTENANCE, LOWER COST, RECREATION AREA, RESOURCE CONSERVATION, HABITAT FOR WILDLIFE AND AQUATIC LIFE, AND ATTRACTIVE AESTHETICS

GENERAL FUNCTION

CONSTRUCTED WETLANDS ARE...

"TREATMENT SYSTEMS THAT USE NATURAL PROCESSES INVOLVING WETLAND VEGETATION, FILTER MEDIA, AND THEIR ASSOCIATED MICROBIAL ASSEMBLAGES TO IMPROVE WATER QUALITY" (US EPA)

A POPULAR METHOD OF WASTEWATER TREATMENT FOR SMALL COMMUNITIES AND REMOTE LOCATIONS AROUND THE WORLD

WETLAND TYPES

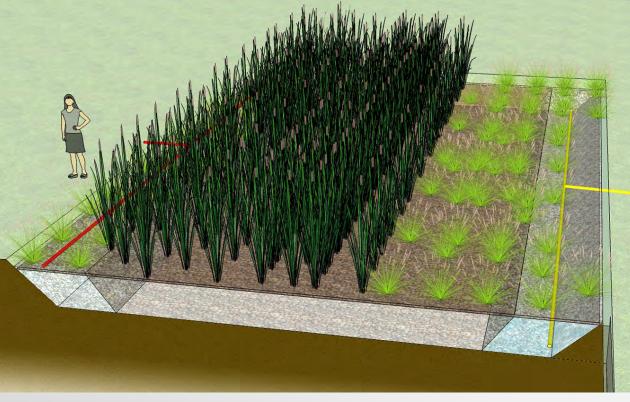
CATEGORIES BASED ON HYDROLOGY:

1. FREE WATER SURFACE FLOW (FWS)

2. SUBSURFACE FLOW (SSF)

* VERTICAL SSF * HORIZONTAL SSF

3. HYBRID



FREE WATER SURFACE

OPEN SOURCE IMAGES, 2019.

- SIMILAR IN APPEARANCE TO NATURAL WETLANDS
- SHALLOW DEPTH OF WATER OVER A SATURATED SUBSTRATE
- BENEFITS: ATTRACTIVE, DRAW WILDLIFE, ALLOW HUMAN CONTACT WITH WATER
- DRAWBACKS: SUSCEPTIBLE TO FREEZING, POTENTIAL ODORS AND MOSQUITOS

HORIZONTAL SUBSURFACE FLOW

- WATER FLOWS HORIZONTALLY THROUGH THE SUBSTRATE
- FIRST USED IN GERMANY IN 1974
- NOW USED IN TENS OF THOUSANDS OF EUROPEAN COMMUNITIES
- BENEFITS: LACK OF ODORS, MOSQUITOS, AND MINIMAL RISK OF HUMAN CONTACT
- DRAWBACKS: DESIGN AND MATERIAL SPECS CRITICAL TO PREVENT CLOGGING OF SUBSTRATE/FILTER MEDIA
- SOMEWHAT PREFERENTIAL TO ANAEROBIC (DENITRIFYING) CONDITIONS

VERTICAL SUBSURFACE FLOW

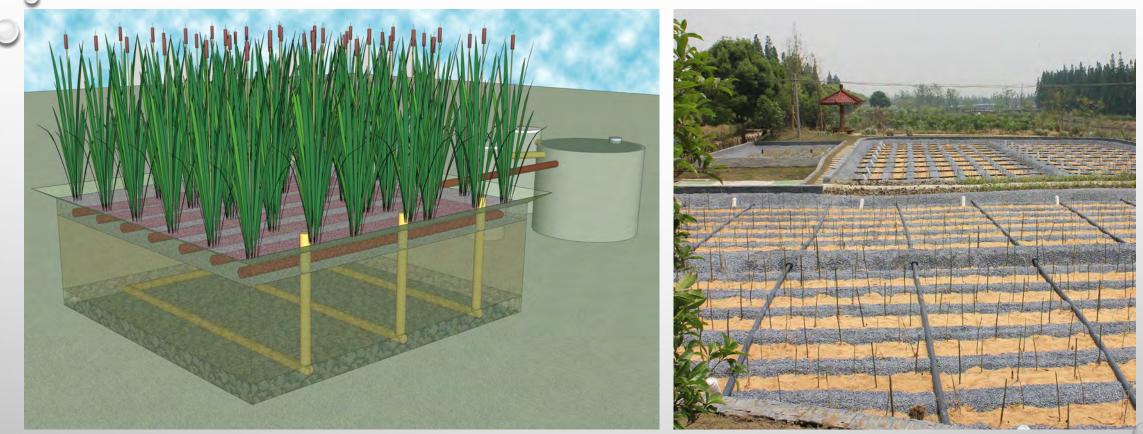
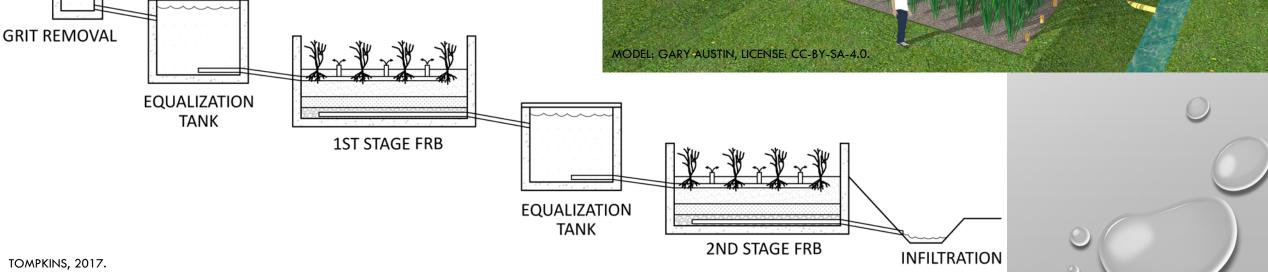


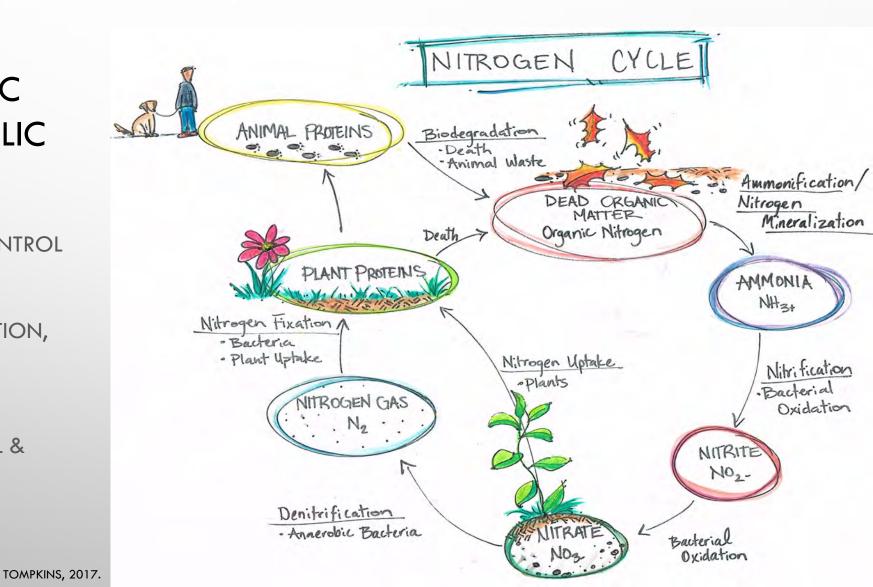
PHOTO & MODEL: GARY AUSTIN, LICENSE: CC-BY-SA-4.0.

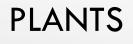

- WATER IS DISTRIBUTED BELOW SURFACE AND FLOWS VERTICALLY THROUGH THE SUBSTRATE
- BENEFITS: REQUIRE LESS AREA THAN FWS WETLANDS, LACK OF ODORS, MOSQUITOS, AND MINIMAL RISK OF HUMAN CONTACT
- FRENCH REED BED DESIGN DOES NOT REQUIRE PRETREATMENT
- SOMEWHAT PREFERENTIAL TO AEROBIC (NITRIFYING) CONDITIONS

VERTICAL SUBSURFACE FLOW

- RECEIVES RAW WASTEWATER
- MINIMAL PRETREATMENT FOR GRIT/OIL REMOVAL
- NO NEED FOR SEPTIC OR IMHOFF TANKS
- SLUDGE REMOVAL FROM 1ST STAGE BEDS EVERY 10+ YRS
- BENEFITS: REDUCED COST RELATED TO PRETREATMENT/SLUDGE HANDLING OVER OTHER SYSTEMS
- DRAWBACKS: POTENTIAL PERMITTING CHALLENGES RELATED TO VECTORING PATHOGENS FROM SURFACE SLUDGE

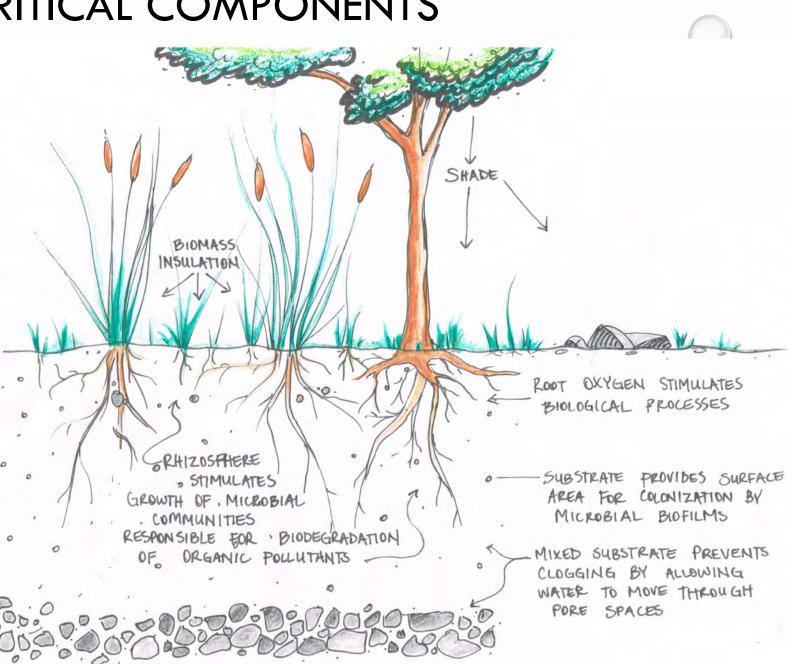
FRENCH REED BEDS



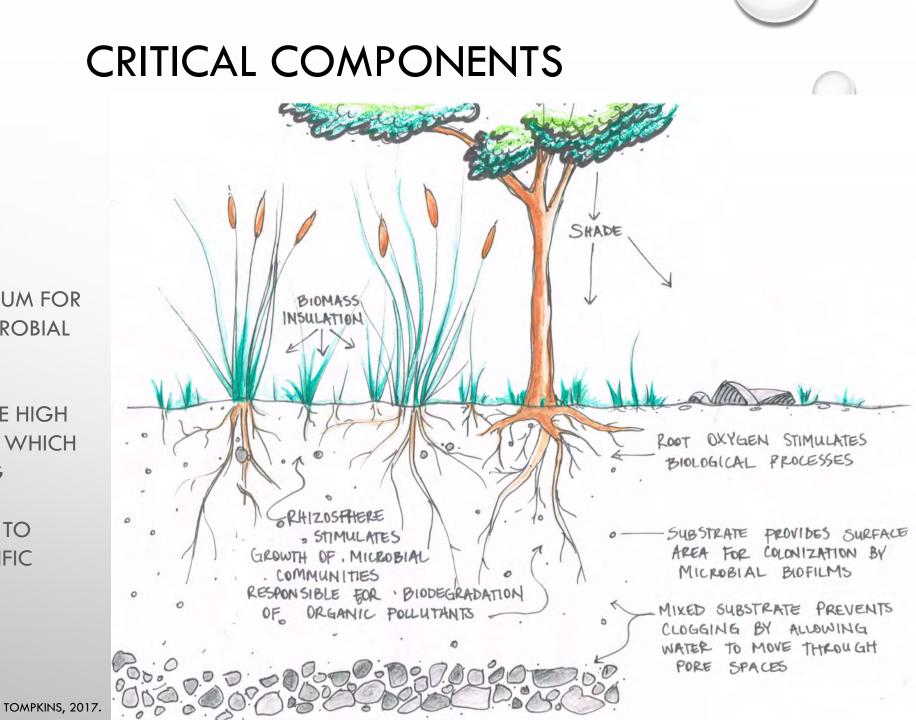

CRITICAL COMPONENTS

AERATION, HYDRAULIC LOADING, & HYDRAULIC RETENTION

- CAN BE MANIPULATED TO CONTROL AEROBIC AND ANAEROBIC CONDITIONS TO PROMOTE AMMONIFICATION, NITRIFICATION, AND DENITRIFICATION
- EXAMPLES: DROP AERATION, FORCED AERATION, TIDAL (FILL & DRAIN) FLOW REGIMES, ETC.



CRITICAL COMPONENTS


- **PROVIDE THERMAL PROTECTION AGAINST ICE**
- PLANT GROWTH, RESPIRATION, AND NUTRIENT EXCHANGE SUPPORT MICROBES THAT BREAK DOWN POLLUTANTS
- POLY-CULTURE AND COLD-HARDY TRAITS IMPROVE TREATMENT EFFICIENCY

TOMPKINS, 2017.

SUBSTRATE

- PROVIDES GROWING MEDIUM FOR PLANT MATERIALS AND MICROBIAL LIFE
- MIXED SUBSTRATES PROVIDE HIGH HYDRAULIC CONDUCTIVITY WHICH HELPS PREVENT CLOGGING
- SPECIFIC SUBSTRATES USED TO TARGET REMOVAL OF SPECIFIC POLLUTANTS

TEMPERATURE

- COLD TEMPERATURES SLOW
 MICROBIAL
 PROCESSES/NITRIFICATION AND
 DENITRIFICATION, BUT CAN STILL
 PROVIDE EFFECTIVE TREATMENT.
- COLD TEMPS DON'T EFFECT REMOVAL OF PHOSPHOROUS, TSS, BOD, COD
- USE COMMON SENSE: SOUTHERN ASPECTS, BURY PIPING, ALTERNATE FILTERS 2X WEEK
- SSF WETLANDS CAN REDUCE WATER TEMPERATURE

CRITICAL COMPONENTS

OPEN SOURCE IMAGES, 2019.

CASE STUDY #1 PRINSBURG, MINNESOTA

POPULATION 497 COST \$1,281,800 (2004)

+ \$30,000/YR CONTRACTED MONITORING, M & O

+ ANNUAL SEPTIC PUMPING

+ PUBLIC WORKS MANAGER

- SIZED TO TREAT 54,000 GPD
- GRAVITY CITY SEWER
 LINES
- PRETREATMENT (4) 20,000 SEPTIC TANKS
- EVEN DISTRIBUTION TO (4) HORIZONTAL SSF
 WETLANDS WITH FORCED BED AERATION
- TOTAL SIZE = 1.57 ACRES
- (2) 15,000 G DOSING TANKS FEED (2) VERTICAL SSF SAND FILTERS FOR SECONDARY TREATMENT
- CHLORINATION/ DECHLORINATION PRIOR TO DISCHARGE TO SURFACE WATER

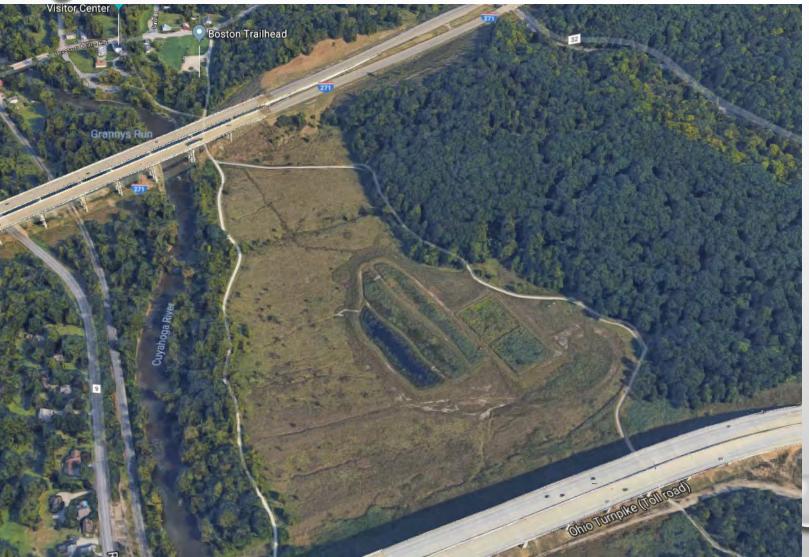
CITY OF PRINSBURG, 2015

CASE STUDY #1 PRINSBURG, MINNESOTA

CASE STUDY #2 MINOT, NORTH DAKOTA

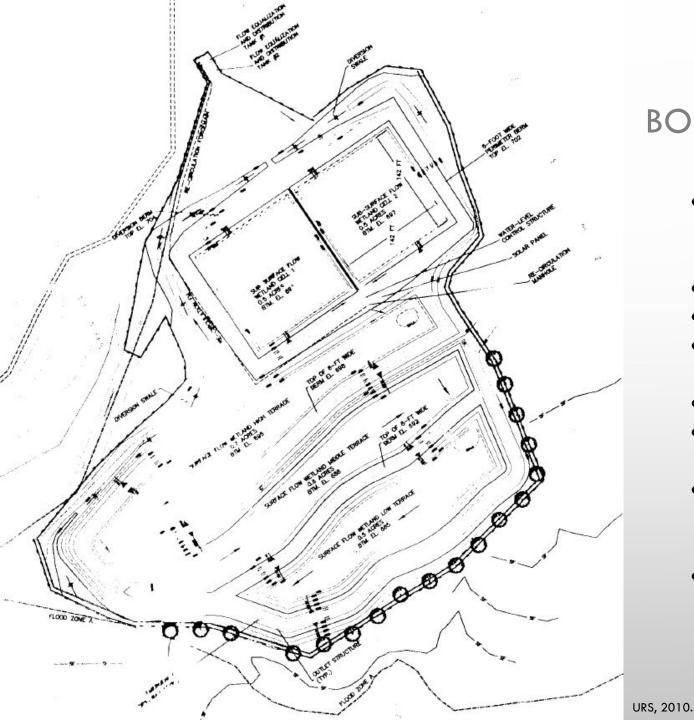
POPULATION 50,000 (2018)

CONSTRUCTED 1991

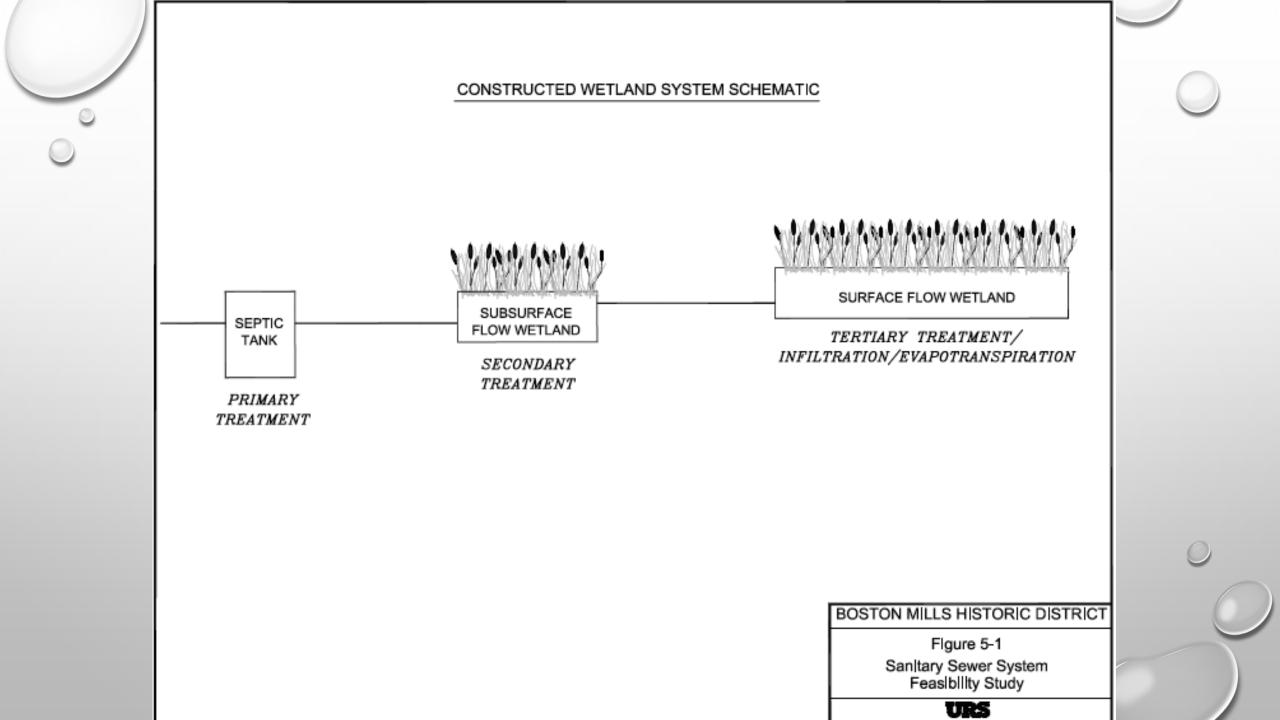


CASE STUDY #2 MINOT, NORTH DAKOTA

- TREATS 7.5 MILLION GPD
- PERMITTED AS LAGOON FACILITY WITH WASTEWATER STABILIZATION PONDS (I.E. FWS WETLANDS)
- PRIMARY TREATMENT = (2) 8-ACRE AERATION BASINS
- FOLLOWED BY (5) 140-ACRE LAGOON CELLS
- SECONDARY TREATMENT = (4) FWS WETLANDS OCCUPYING 160 ACRES
- WETLAND DEPTH & VEGETATION SPECIFIED TO FACILITATE REMOVAL OF BOD, TSS, NITRIFICATION, DENITRIFICATION, AND NUTRIENT REMOVAL
- FINAL TREATMENT = 2.5 MILE DRAINAGE WAY DISCHARGING TO SURFACE WATER MAY-DECEMBER


CASE STUDY #3 BOSTON MILLS HISTORIC DISTRICT

CUYAHOGA VALLEY NATIONAL PARK, OHIO


COST \$132,500 (2006 FEASIBILITY STUDY)

GOOGLE EARTH, 2018.

CASE STUDY #3 BOSTON MILLS HISTORIC DISTRICT

- PROVIDES TREATMENT TO 6 STRUCTURES INCLUDING VISITORS CENTER, PUBLIC RESTROOMS, & OFFICES
- DESIGN CAPACITY 4999 GPD
- PRIMARY TREATMENT = SEPTIC TANK
- SECONDARY TREATMENT = SSF WETLAND TO REMOVE BOD AND SMALL SUSPENDED SOLIDS
- THROUGH AEROBIC & ANAEROBIC PROCESSES
- FINAL TREATMENT = FWS WETLAND FOR INFILTRATION & EVAPORATION
- BENEFITS: NO DISCHARGE PERMIT REQUIRED, MAINTAINS NATURAL AESTHETICS IN NATIONAL PARK W/HIGH VISIBILITY FROM HIGHWAYS
- CHALLENGE: AVOIDING 100-YR FLOODPLAIN

PERMITTING WASTEWATER TREATMENT FACILITIES

AN IDAHO EXAMPLE

PLANNING

FACILITY PLAN - DEVELOPED BY LICENSED ENGINEER MASTER PLANNING DOCUMENT/ENGINEERING REPORT COMPREHENSIVE ASSESSMENT OF OPERATIONAL NEEDS & SYSTEM REQUIREMENTS REQUIRED TO BE ELIBIGLE FOR STATE GRANT/LOAN FUNDING REVIEW & APPROVAL BY DEPARTMENT OF ENVIRONMENTAL QUALITY

ENGINEERING

PRELIMINARY ENGINEERING REPORT COMPLETED BY COMMUNITY'S ENGINEER INCLUDES PLANS AND SPECS FOR PROPOSED TREATMENT SYSTEM REVIEW & APPROVAL BY DEPARTMENT OF ENVIRONMENTAL QUALITY

PERMITTING

COMMUNITY REQUESTS MODIFICATION OF AN EXISTING DISPOSAL PERMIT, OR ... APPLY FOR A NEW PERMIT MAY BE A DISCHARGE AND/OR REUSE PERMIT APPROVAL REQUIRED PRIOR TO IMPLEMENTATION OF SYSTEM

WATER QUALITY STANDARDS

Parameter	30-Day Average	7-Day Average			
BOD ₅	30 mg L ⁻¹	45 mg L ⁻¹			
TSS	30 mg L ⁻¹	45 mg L ⁻¹			
BOD ₅ and TSS Removal	85% minimum	÷			
pH	Between 6.0 and 9.0 standard units				

FEDERAL SECONDARY TREATMENT STANDARDS (40 40 CFR 133.102 CFR 133.102) UNDER THE CLEAN WATER ACT

Parameter	Units	Effluent Limitations			Monitoring Requirements		
		Average Monthly	Average Weekly	Maximum Daily	Sample Location	Sample Frequency	Sample Type
		Par	ameters w	ith Effluent Li	mits		
BOD ₅	mg L ⁻¹	30	45		Influent	1 month ⁻¹	Grab
	lb d-1	20	30		and Effluent		Calculation
BOD₅% Removal	%	85 minimum		1999 (N	***	1 month ⁻¹	Calculation
TSS	mg L ⁻¹	30	45	1-1-1	Influent		Grab
	lb d-1	18	30		and Effluent		Calculation
TSS % Removal	%	85 minimum	÷			1 month ⁻¹	Calculation
E. coli	cfu ml ⁻¹⁰⁰	126		406 instant. maximum	Effluent	5 month ⁻¹	Grab
	µg L⁻¹	12	12-22	21	Effluent	1 month ⁻¹	Grab

2018 NPDES PERMIT LIMITATIONS AND MONITORING REQUIREMENTS FOR JULIAETTA, IDAHO (EXCLUDING WATER TEMPERATURE WHICH IS LISTED SEPARATELY)

IDAHO ADMINISTRATIVE CODE (IDAPA 58.01.02.100) DEFINES 5 BENEFICIAL USES OF WATER

- SUPPORT AQUATIC LIFE
- PROVIDE RECREATION AREA
- MAINTAIN A SUSTAINABLE
 WATER SUPPLY
- PROVIDE WILDLIFE HABITAT
- IMPROVE AESTHETICS

5 BENEFICIAL USES OF WATER

5 BENEFICIAL USES OF WATER

- DO NOT QUALIFY AS "BENEFICIAL USES" WHILE WATER IS HELD IN A PRIVATE TREATMENT SYSTEM
- BUT BENEFITS ARE
 ACKNOWLEDGED BY
 REGULATORY AGENCIES
- RECEIVING WATERS ARE
 POSITIVELY IMPACTED

UNLIKE MECHANICAL TREATMENT SYSTEMS

 \rightarrow

CONSTRUCTED WETLANDS CAN PROVIDE BENEFITS WHILE WATER IS IN THE TREATMENT SYSTEM

PERMITTING CHALLENGES

- NO CONSTRUCTED WETLANDS FOR WASTEWATER TREATMENT IN IDAHO, CREATING UNCERTAINTY IN PERMITTING
- METHOD OF TREATMENT IS INCLUDED IN THE FACILITY PLAN AT THE DISCRETION OF THE CONTRACT ENGINEER OR AT THE COMMUNITY'S REQUEST
- TECHNICALLY (BY THE BOOK) THERE ARE NO INCENTIVES FOR CONSTRUCTED WETLANDS, ONLY FOR EFFECTIVE TREATMENT METHODS, HOWEVER...
- THE REALITY THAT WETLANDS PROVIDE THE 5 BENEFICIAL USES OF WATER IS RECOGNIZED BY REGULATORY AGENCIES
- THEIR ABILITY TO LOWER WATER TEMPERATURE IS NOT WELL-KNOWN
- THEIR LOW-COST COMPARED TO TRADITIONAL METHODS IS NOT WELL-KNOWN

FUNDING CONSTRUCTED WETLANDS

TOTAL COSTS INCLUDE:

- CONSTRUCTION & INSTALLATION
 - MATERIALS
 - LABOR & SITEWORK
- OPERATIONS, MAINTENANCE, MONITORING
- DEPRECIATION OVER LIFETIME OF SYSTEM
- SIZE & COMPLEXITY

LOW MAINTENANCE CAN TRANSLATE TO LARGE SAVINGS OVER THE LIFETIME OF A SYSTEM

OPEN SOURCE IMAGES, 2019.

FUNDING CONSTRUCTED WETLANDS

EXAMPLE:

COST FOR A FRENCH REED BED SYSTEM IN ITALY (2014-2016) WAS STUDIED FOR A 500-1000 POPULATION EQUIVALENT (SIMILAR IN SIZE TO JULIAETTA)

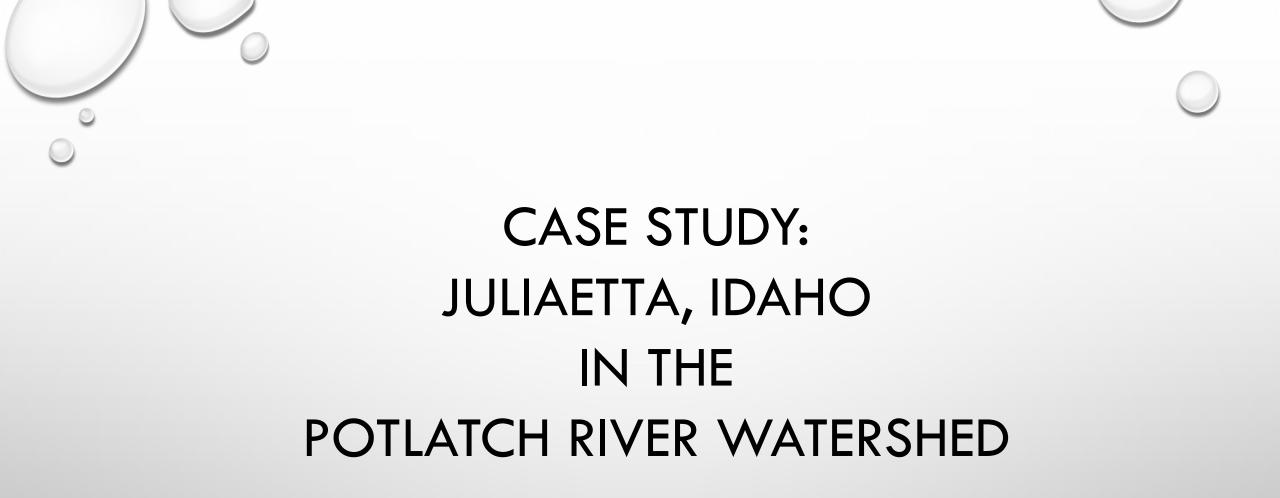
NEW CONSTRUCTION WAS 364 EUROS (\$417 US) PER PE

= \$417,000 US FOR A SYSTEM WITH 1000 PE TREATMENT CAPACITY

AVERAGE ANNUAL O & M COST OF 5531 EUROS/YEAR (\$6340 US) FOR ENERGY & LABOR (REED HARVESTING, INSPECTIONS, & MONITORING)

PRIMARY O & M COST OF FRENCH REED BEDS IS COMPARATIVELY LESS THAN OTHER WETLAND SYSTEMS DUE TO REDUCED SLUDGE MANAGEMENT NEEDS

FUNDING PROGRAMS

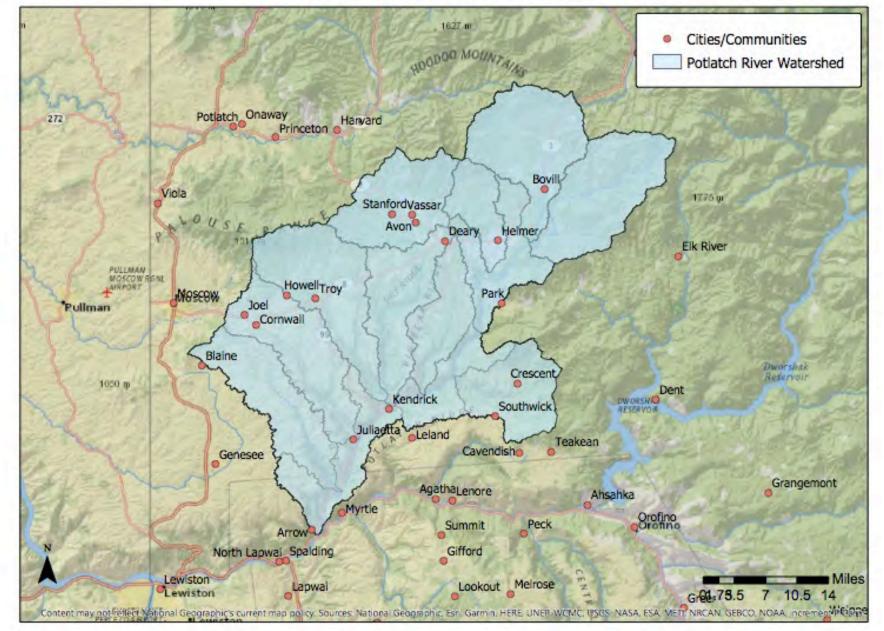

010

FOR WASTEWATER SYSTEMS

Agency	Idaho Department	Idaho Department	National Rural	U.S. Army Corps of	U.S. Department of
	of Commerce	of Environmental Quality	Water Association	Engineers	Agriculture - Rural Development
Program	Community Development Block Grant	Wastewater Planning Grant; State Revolving Fund Low Interest Construction Loan	Rural Water Loan Fund	Section 595 Program - Environmental Infrastructure	Technical Assistance & Training (TAT) - Water & Waste Direct Loans & Grants
Purpose	Public facilities construction and improvements - sewer, water, etc.	Facility Planning & Construction	Water/Wastewater Project pre- development and small capital projects	Rural Water/Wastewater Improvements	Broad - construction, improvements, relocation, connections, land acquisition
Eligibility	> or = 51% Low- Moderate Income Communities	Public entities and non-profits	Public entities and non-profits, rural communities up to 10,000	Nevada, Montana, Idaho; <10,000 preferred	Rural communities up to 10,000 population
Grantor/Community Match	At least 50/50 to be competitive	50/50 planning; 100% construction	Maximum \$100,000 or 75% of total project cost	75/25	Grant - none; 45/55 Loan

GENERAL CHALLENGES

- PUBLIC ACCEPTANCE THEY CAN'T SUPPORT WHAT THEY DON'T KNOW
- ENGINEERING THEY CAN'T DESIGN WHAT WON'T GET PERMITTED BY DEQ
- PERMITTING THEY CAN'T PERMIT WHAT ISN'T ENGINEERED BEYOND ALL DOUBT THAT THE PUBLIC HEALTH, SAFETY, AND WELFARE ISN'T AT RISK



• 380,400 ACRES

• LAND USES

- FORESTRY
- LIVESTOCK
- AGRICULTURE
- RURAL RESIDENTIAL
- COMMERCIAL
- INDUSTRIAL
- UNDEVELOPED
- POLLUTANTS
 - BACTERIA
 - DISSOLVED OXYGEN
 - AMMONIA
 - NUTRIENTS
 - OIL & GREASE
 - ORGANICS
 - PESTICIDES
 - SEDIMENT
 - TEMPERATURE
- SALMON SPAWNING HABITAT

Potlatch River Watershed

JULIAETTA, IDAHO

50[%]N

- POPULATION 609 (STABLE)
- AVE. TEMPERATURES
 - 28° F WINTER
 - 88° F SUMMER
- ELEVATION 1155 FT
- 18 INCHES ANNUAL PRECIP.
- HARDINESS ZONE 7A
- HEAT ZONE 3

JULIAETTA, IDAHO

- CENTRALIZED WWT COMPLETED
 1977
- STILL USES MOST OF ORIGINAL
 EQUIPMENT
- 590 CONNECTIONS
- OPERATED & MAINTAINED BY 2
 OPERATORS IN TRAINING

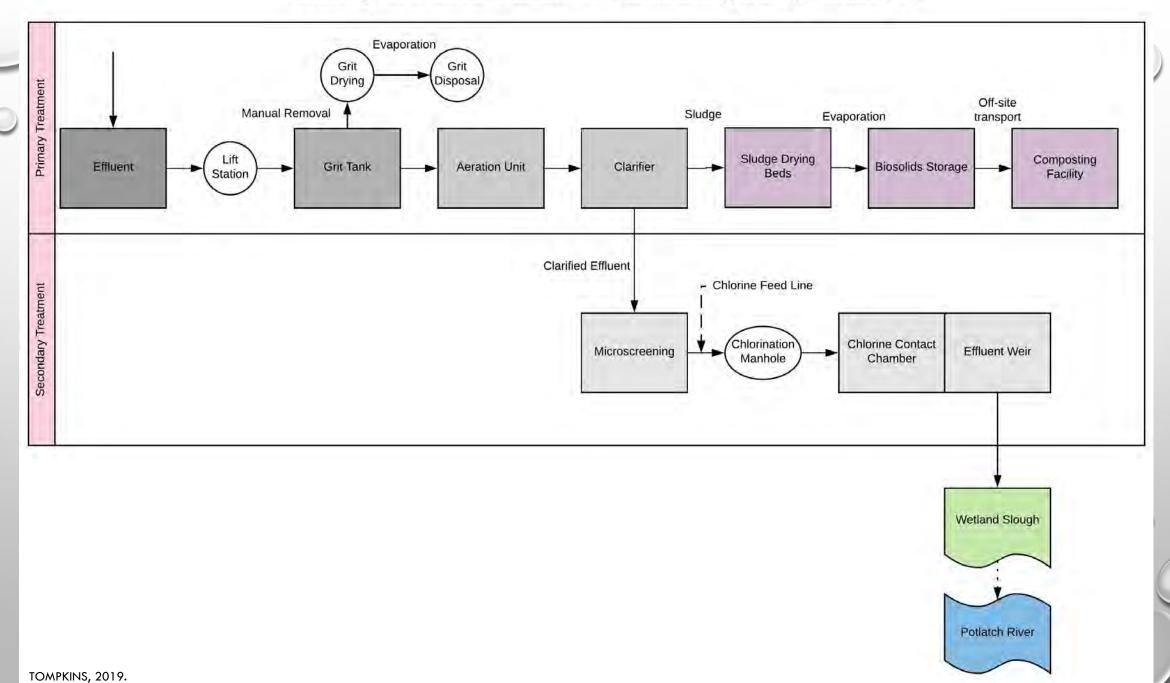
LOCATION DOWNSTREAM
 OF CITY CENTER

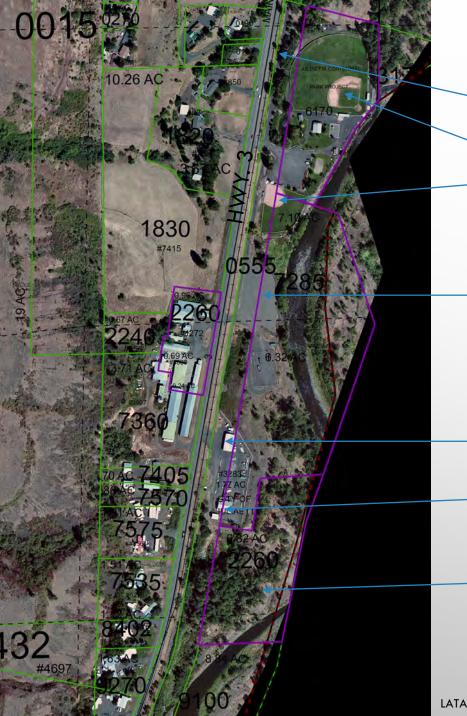
- TREATED EFFLUENT
 DISCHARGED TO WETLAND
 BASIN NEAR POTLATCH
 RIVER
- 2018 DISCHARGE PERMIT CONTAINS WATER TEMPERATURE STANDARDS

Google Earth

Effluent Outfall

Wastewater Treatment Facility


mage Landsat / Copernicus



EXISTING WASTEWATER OUTFALL

 \bigcirc

Existing Mechanical Wastewater Treatment System, Juliaetta, ID

PROJECT VICINITY

PAVED REC PATH (OLD RAILROAD BED)

CENTENNIAL PARK – CITY PARK WITH BASEBALL & SOFTBALL FIELDS, PARKING, AND COVERED PICNIC AREA

CITY PROPERTY & GRAVEL PARKING/STORAGE AREA

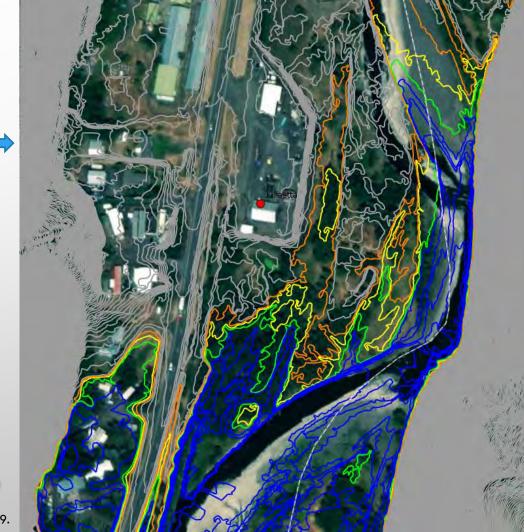
VOLUNTEER FIRE STATION

EXISTING WASTEWATER TREATMENT FACILITY

100-YEAR FLOODPLAIN

LATAH COUNTY ASSESSORS OFFICE, 2018.

FLOODPLAIN ANALYSIS


1970'S DATA

VS.

2016 LIDAR DATA

TOMPKINS, 2019.

- FEMA FIRM MAPS NOT HELPFUL IN DETERMINING FLOODPLAIN
- FIRM FLOOD ELEVATION (1038) USED WITH CURRENT ELEVATION DATA TO INTERPOLATE 100-YEAR FLOODPLAIN
- SOILS = AQUIC XEROFLUVENTS
- SHALLOW DEPTH (18-24") TO WATER TABLE
- FROST DEPTH = 24"

LEWIS-CLARK VALLEY AMERICAN VITICULTURAL AREA

- @ 2018 Good Google Earth 46°29'48.05" N 116°45'36.87" W elev 979 ft eye alt 1564 ft O Imagery Date: 6/4/2016
- HILLSIDES DOWNRIVER NOW FLOURISHING WITH VINEYARDS
- POTENTIAL FUTURE REUSE FOR
 IRRIGATION
- ADVANTAGE OF PLANT AVAILABLE NITROGEN
- REDUCE SURFACE WATER
 DEMAND FOR IRRIGATION

- PAVED REC PATH (ABANDONED RAILROAD BED) STOPS @ PARK
- PATH CONNECTS TO WWT SITE
- COULD EXTEND RECREATIONAL USE
 SOUTH BY PAVING PATH
- PARK IS LOCATED UPHILL FROM WWT FACILITY
- POTENTIAL REUSE TO IRRIGATE BALL
 FIELDS, BUT \$\$\$ TO PUMP UPHILL
- IRRIGATION/REUSE BENEFITS
 + PLANT AVAILABLE NITROGEN
 - + REDUCES SURFACE WATER
 - DEMANDS

TOMPKINS, 2019.

TOMPKINS, 2019.

- JULIAETTA VOLUNTEER FIRE STATION IS LOCATED ADJACENT TO WWT FACILITY
- PRESENTS AN OPPORTUNITY FOR PARTIAL WATER REUSE VS. DISCHARGE TO SURFACE WATER BODY (POTLATCH RIVER)

ADJACENTPROPERTY

- OUTFALL AND INFILTRATION CHANNEL MAY NOT BE OWNED BY JULIAETTA
- SURVEY NECESSARY TO LOCATE
 PROPERTY CORNERS
- 5.6 ADJACENT ACRES
- \$300-\$1000/ACRE
- \$1680-\$5600 TOTAL ASSESSED VALUE
- OPPORTUNITY FOR MUTUALLY
 BENEFICIAL LAND ACQUISITION

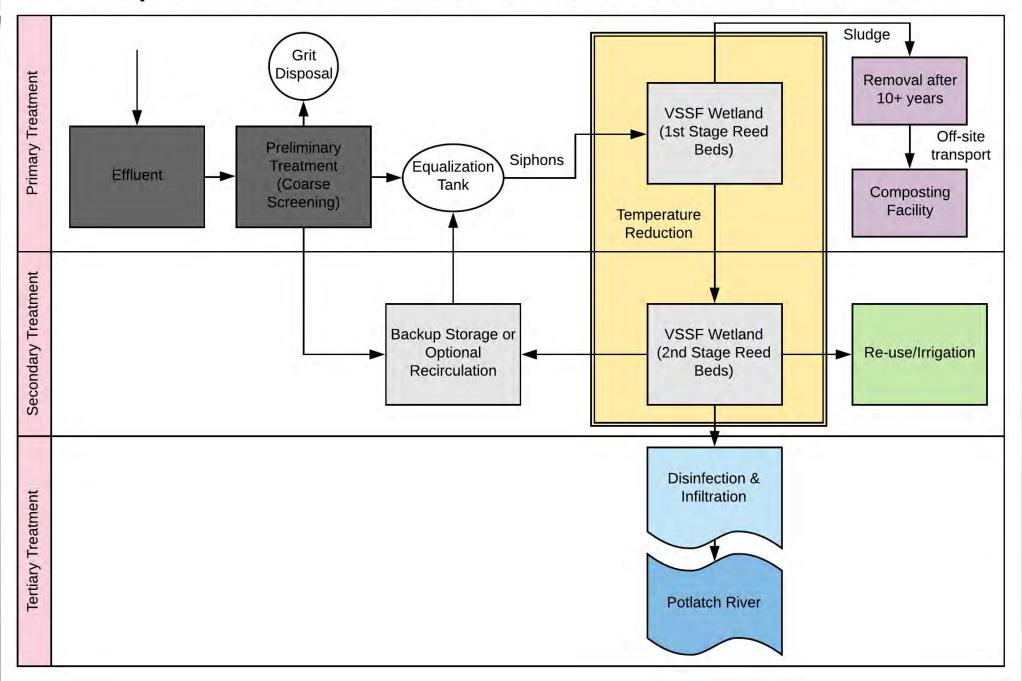
1830			10 - H C - H
	A REPAIR OF	128	
		15-00	
		100	and the second second
		1.15	a, section and
2240 2260		10 300	ALC: NO
		State -	Contraction of the
	7285	Per dia	
	PRI DE LE	2.2.6	10 a 10 m
			ALL ALL
7860		Section !	Here in
		3422	and the state
		The second second	THE R P. LEWIS CO., No. of Concession, Name
		No. S. S.	Strate Constant
		a state	
		-	
7405		**	
	Assessed Value for Parcel: RPJ142	200002260	
7405 7570 75450555	BROWNING CUT STOCK CO	200002260	
	BROWNING CUT STOCK CO Property Address	200002260	
7570 75450555	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535		
	BROWNING CUT STOCK CO Property Address	200002260 Acres 8.710	
7570 75450555	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category	Acres	Current Value
7570 75450555	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG	Acres 8.710 0.000	Current Value 66,500
7570 75450555	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS	Acres 8.710	Current Value 66,500
7575 75450555	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG Subtotal Less Homeowners Exemption	Acres 8.710 0.000	Current Value 66,500 168,000 234,500 0
7570 75450555	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG Subtotal	Acres 8.710 0.000	Current Value 66,500 168,000 234,500
7570 75450555 7575 2260	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG Subtotal Less Homeowners Exemption Net Taxable Property Value	Acres 8.710 0.000	Current Value 66,500 168,000 234,500 0
7570 75450555 7575 2260	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG Subtotal Less Homeowners Exemption	Acres 8.710 0.000	Current Value 66,500 168,000 234,500 0
7570 75450555 7575 2260	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG Subtotal Less Homeowners Exemption Net Taxable Property Value	Acres 8.710 0.000	Current Value 66,500 168,000 234,500 0
7570 75450555 7575 2260	BROWNING CUT STOCK CO Property Address 1571 MAIN ST 83535 Category 22 - IND LOTS 43 - IND BLDG Subtotal Less Homeowners Exemption Net Taxable Property Value	Acres 8.710 0.000	Current Value 66,500 168,000 234,500 0

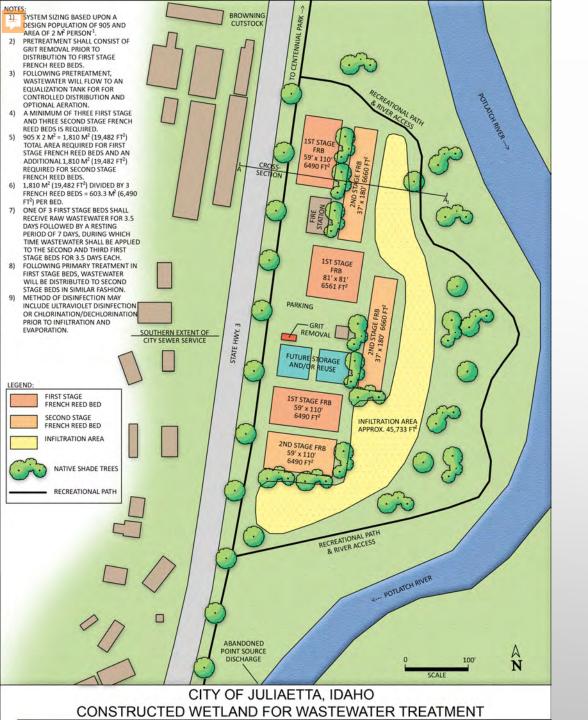
Wetland Types	Aeration, HLR, HRT	Plants	Substrate	Temperature
Surface Flow – best for secondary or tertiary treatment	Topography can be used to facilitate drop aeration	Polycultures provide higher treatment efficiencies than monocultures	Lightweight, mixed aggregates reduce clogging	Cold temperatures slow microbial processes
Horizontal Subsurface Flow – preferential for anaerobic conditions	Batch feeding can be used to control aeration and saturation	Polycultures provide better thermal insulation than monocultures	Mixed substrates provide surface area for microbial attachment	Cold temperatures can affect nitrogen removal at high HLR
Vertical Subsurface Flow – preferential for aerobic conditions	Low HLR increases treatment efficiency	Cold-tolerant plants support cold- tolerant bacteria and increase treatment efficiency	High adsorption substrates facilitate phosphorous removal	Prolonging HRT during cold temperatures increases treatment efficiencies
Vertical French Reed Bed – can be used for primary treatment	Low HRT increases aerobic conditions/nitrification	Roots and rhizomes stimulate growth and oxygenation of microbial communities essential to wastewater treatment	ł	Sludge provides insulation and can prevent filter freezing, mulches can be problematic and should be used with caution
Hybrid System– eliminates limitations of a single system	High HRT increases anaerobic conditions/denitrification	Surface vegetation provides thermal insulation against ice formations	-	Site aspect, subsurface piping, and alternating filters can reduce temperature losses

DESIGN CONCLUSIONS

- \bigcirc
- CONSTRUCTED WETLANDS CAN EFFECTIVELY TREAT WASTEWATER IN ALL CLIMATES AND THE FRENCH REED BED IS THE MOST COST EFFICIENT SYSTEM DUE TO REDUCED SLUDGE MANAGEMENT
- VERTICAL AND HORIZONTAL SSF WETLANDS CAN ALSO BE USED TOGETHER TO OVERCOME SITE CONSTRAINTS
- CRITICAL ELEMENTS MUST BE SPECIFIED TO MAXIMIZE TREATMENT EFFICIENCY

TOMPKINS, 2019.

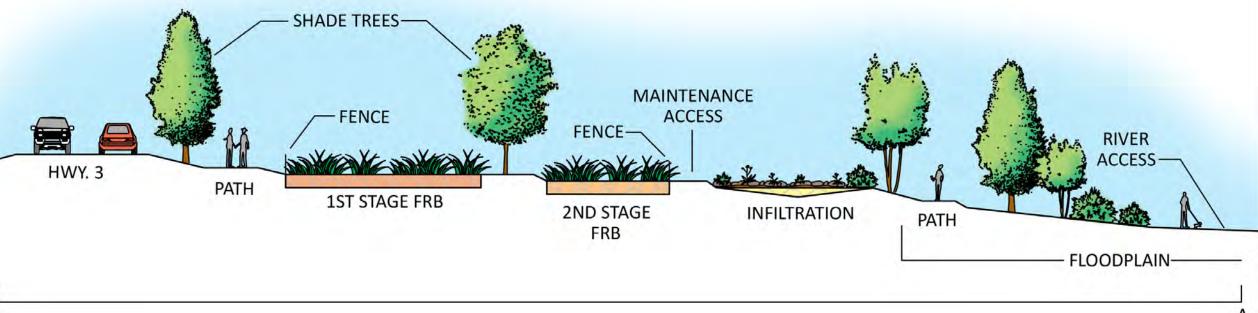

• SOME REGULATORY AGENCIES ARE IDEALLY POSITIONED TO INCENTIVIZE TREATMENT WETLANDS BECAUSE THEY ARE ALSO A FUNDING SOURCE (LIKE IDAHO DEQ)


Native Perennial Wetland Grasses, Reeds, and Sedges					
Botanical Name	Common Name				
Carex amplifolia	Bigleaf Sedge	Ξŕ			
Carex aquitilis	Water Sedge	E i it			
Carex lanuginosa	Wooly Sedge				
Carex lenticularis	Lens Sedge	- ((
Carex microptera	Small-winged Sedge				
Carex nebrascensis	Nebraska Sedge				
Carex obnupta	Slough Sedge	- 6			
Carex simulata	Shortbeaked Sedge				
Carex utriculata	Beaked Sedge				
Carex vesicaria	Inflated Sedge				
Eleocharis palustris	Creeping Spikerush				
Juncus articulatus	Jointed Rush	- 1			
Juncus balticus	Baltic Rush	e i			
Juncus effuses	Common Rush				
Juncus ensifolius	Dagger-leaf Rush	- 1			
Juncus tenuis	Slender Rush	21			
Scirpus acutus	Hardstem Bulrush	ц			
Scirpus cyperinus	Woolgrass				
Scirpus microcarpus	Small Fruited Bulrush	11			
Scirpus pungens	Three-square Bulrush				
Scirpus validus	Softstem Bulrush				
Typha latifolia	Common Cattail				

DESIGN CONCLUSIONS

- CONSTRUCTED WETLANDS ARE CHEAPER THAN TRADITIONAL SYSTEMS AND MULTIPLE FUNDING SOURCES CAN BE LEVERAGED TOGETHER
- PERMITTING REQUIRES GOOD COMMUNICATION BETWEEN ENGINEER, COMMUNITY, AND REGULATORY AGENCIES
- REQUIRES A DESIGN TEAM WILLING TO CONSIDER THIS "NEW" TECHNOLOGY
- ADDITIONAL RESEARCH SHOULD INVESTIGATE THE USE OF NATIVE PLANTS AS AN ALTERNATIVE TO INVASIVE AND NON-NATIVE SPECIES

Proposed Constructed Wastewater Treatment Wetland, Juliaetta, ID



FINAL DESIGN

- FRENCH REED BED METHOD IS THE MOST COST-EFFECTIVE
 TREATMENT SYSTEM
- FENCING REQUIRED TO PREVENT DIRECT CONTACT RECREATION IN REED BEDS
- CAN BE INCORPORATED INTO A LANDSCAPE WITH RECREATIONAL PATHS, BENCHES, AND WILDLIFE HABITAT
- SUFFICIENT GRAVEL AREAS FOR NEW CONSTRUCTION ABOVE FLOOD ELEVATION ELIMINATES NEED FOR ADDITIONAL SITE DISTURBANCE
- ONCE OPERATIONAL, EXISTING SYSTEM CAN BE DECOMMISSIONED TO PROVIDE AREA WATER STORAGE, RECIRCULATION, AND/OR REUSE
- RECREATIONAL PATH PROVIDES RIVER ACCESS AND CONNECTS TO CENTENNIAL PARK

FINAL DESIGN

- STORAGE INCREASES FLEXIBILITY FOR FUTURE USES: IRRIGATION OF CITY PARK OR VINEYARDS, FIRE STATION USE
- STRATEGICALLY LOCATED DECIDUOUS TREES
 PROVIDE SUMMER SHADE TO COOL EFFLUENT
- NATIVE VEGETATION PROVIDE WILDLIFE HABITAT: COVER AND FOOD SOURCES
- GRAVITY FLOW USED TO MINIMIZE ENERGY NEEDS
- INFILTRATION BASINS FACILITATE PERMITTING AS A REUSE FACILITY, PROVIDE STREAMBANK RECHARGE, AND FURTHER COOL WATER TEMPERATURE

SELECT REFERENCES & RESOURCES

CONSTRUCTED WETLANDS AND SUSTAINABLE DEVELOPMENT – AUSTIN & YU (2016)

CONSTRUCTED WETLANDS TECHNOLOGY ASSESSMENT AND DESIGN GUIDANCE – IOWA DEP. OF NATURAL RESOURCES (2007)

RECIRCULATING MEDIA FILTER TECHNOLOGY ASSESSMENT AND DESIGN GUIDANCE – IOWA DEP. OF NATURAL RESOURCES (2007) SMALL-SCALE CONSTRUCTED WETLAND TREATMENT SYSTEMS FEASIBILITY, DESIGN CRITERIA, AND O&M REQUIREMENTS – WATER ENVIRONMENT RESEARCH FOUNDATION (2006)

TREATMENT WETLANDS – KADLEC & WALLACE $(2^{ND} \text{ EDITION}, 2009)$

WASTEWATER ENGINEERING TREATMENT AND REUSE – METCALF & EDDY (5^{TH} EDITION, 2013)

ACKNOWLEDGEMENTS

SPECIAL THANKS TO GARY AUSTIN, BETH SCOTT, & RONALD ROBBERECHT FOR THEIR GUIDANCE THROUGHOUT THIS RESEARCH PROJECT!